3.2.25 \(\int \frac {\sin ^6(e+f x)}{(a+b \sec ^2(e+f x))^{5/2}} \, dx\) [125]

3.2.25.1 Optimal result
3.2.25.2 Mathematica [B] (warning: unable to verify)
3.2.25.3 Rubi [A] (verified)
3.2.25.4 Maple [B] (verified)
3.2.25.5 Fricas [A] (verification not implemented)
3.2.25.6 Sympy [F(-1)]
3.2.25.7 Maxima [F]
3.2.25.8 Giac [F]
3.2.25.9 Mupad [F(-1)]

3.2.25.1 Optimal result

Integrand size = 25, antiderivative size = 288 \[ \int \frac {\sin ^6(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{5/2}} \, dx=\frac {5 (a+b) \left (a^2+14 a b+21 b^2\right ) \arctan \left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {a+b+b \tan ^2(e+f x)}}\right )}{16 a^{11/2} f}-\frac {(a+b) (11 a+21 b) \cos (e+f x) \sin (e+f x)}{16 a^3 f \left (a+b+b \tan ^2(e+f x)\right )^{3/2}}+\frac {3 (a+b) \cos ^3(e+f x) \sin (e+f x)}{8 a^2 f \left (a+b+b \tan ^2(e+f x)\right )^{3/2}}+\frac {\cos ^3(e+f x) \sin ^3(e+f x)}{6 a f \left (a+b+b \tan ^2(e+f x)\right )^{3/2}}-\frac {7 b (a+b) (7 a+15 b) \tan (e+f x)}{48 a^4 f \left (a+b+b \tan ^2(e+f x)\right )^{3/2}}-\frac {b \left (113 a^2+420 a b+315 b^2\right ) \tan (e+f x)}{48 a^5 f \sqrt {a+b+b \tan ^2(e+f x)}} \]

output
5/16*(a+b)*(a^2+14*a*b+21*b^2)*arctan(a^(1/2)*tan(f*x+e)/(a+b+b*tan(f*x+e) 
^2)^(1/2))/a^(11/2)/f-1/48*b*(113*a^2+420*a*b+315*b^2)*tan(f*x+e)/a^5/f/(a 
+b+b*tan(f*x+e)^2)^(1/2)-1/16*(a+b)*(11*a+21*b)*cos(f*x+e)*sin(f*x+e)/a^3/ 
f/(a+b+b*tan(f*x+e)^2)^(3/2)+3/8*(a+b)*cos(f*x+e)^3*sin(f*x+e)/a^2/f/(a+b+ 
b*tan(f*x+e)^2)^(3/2)+1/6*cos(f*x+e)^3*sin(f*x+e)^3/a/f/(a+b+b*tan(f*x+e)^ 
2)^(3/2)-7/48*b*(a+b)*(7*a+15*b)*tan(f*x+e)/a^4/f/(a+b+b*tan(f*x+e)^2)^(3/ 
2)
 
3.2.25.2 Mathematica [B] (warning: unable to verify)

Leaf count is larger than twice the leaf count of optimal. \(1705\) vs. \(2(288)=576\).

Time = 16.24 (sec) , antiderivative size = 1705, normalized size of antiderivative = 5.92 \[ \int \frac {\sin ^6(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{5/2}} \, dx =\text {Too large to display} \]

input
Integrate[Sin[e + f*x]^6/(a + b*Sec[e + f*x]^2)^(5/2),x]
 
output
-1/3072*(((a + 2*b + a*Cos[2*(e + f*x)])/(a + b))^(3/2)*(a + 2*b + a*Cos[2 
*e + 2*f*x])^(5/2)*Sec[e + f*x]^5*(-60*Sqrt[a + b]*(3*a^3 + 17*a^2*b + 28* 
a*b^2 + 14*b^3)*ArcSin[(Sqrt[a]*Sin[e + f*x])/Sqrt[a + b]]*(a + 2*b + a*Co 
s[2*(e + f*x)])^2 + Sqrt[a]*Sin[e + f*x]*Sqrt[(a + b - a*Sin[e + f*x]^2)/( 
a + b)]*(3*(239*a^5 + 1839*a^4*b + 5200*a^3*b^2 + 6960*a^2*b^3 + 4480*a*b^ 
4 + 1120*b^5) - 2*a*(459*a^4 + 3180*a^3*b + 7200*a^2*b^2 + 6720*a*b^3 + 22 
40*b^4)*Sin[e + f*x]^2 + 672*a^2*b*(a + b)^2*Sin[e + f*x]^4 + 192*a^3*(a + 
 b)^2*Sin[e + f*x]^6)))/(Sqrt[2]*a^(9/2)*f*(a + 2*b + a*Cos[2*(e + f*x)])^ 
(7/2)*(a + b*Sec[e + f*x]^2)^(5/2)) + (((a + 2*b + a*Cos[2*(e + f*x)])/(a 
+ b))^(3/2)*(a + 2*b + a*Cos[2*e + 2*f*x])^(5/2)*Sec[e + f*x]^5*(420*Sqrt[ 
a + b]*(a^4 + 9*a^3*b + 26*a^2*b^2 + 30*a*b^3 + 12*b^4)*ArcSin[(Sqrt[a]*Si 
n[e + f*x])/Sqrt[a + b]]*(a + 2*b + a*Cos[2*(e + f*x)])^2 - Sqrt[a]*Sin[e 
+ f*x]*Sqrt[(a + b - a*Sin[e + f*x]^2)/(a + b)]*(3*(561*a^6 + 6161*a^5*b + 
 25200*a^4*b^2 + 50960*a^3*b^3 + 54880*a^2*b^4 + 30240*a*b^5 + 6720*b^6) - 
 2*a*(1151*a^5 + 11230*a^4*b + 39200*a^3*b^2 + 62720*a^2*b^3 + 47040*a*b^4 
 + 13440*b^5)*Sin[e + f*x]^2 + 672*a^2*(a + b)^2*(a^2 + 3*a*b + 6*b^2)*Sin 
[e + f*x]^4 - 576*a^3*(a - 2*b)*(a + b)^2*Sin[e + f*x]^6 + 512*a^4*(a + b) 
^2*Sin[e + f*x]^8)))/(3072*Sqrt[2]*a^(11/2)*f*(a + 2*b + a*Cos[2*(e + f*x) 
])^(7/2)*(a + b*Sec[e + f*x]^2)^(5/2)) - (5*(a + 2*b + a*Cos[2*e + 2*f*x]) 
^(5/2)*Csc[e + f*x]*Sec[e + f*x]^5*(Sin[e + f*x]^2/(a + b) + ((a + 2*b ...
 
3.2.25.3 Rubi [A] (verified)

Time = 0.56 (sec) , antiderivative size = 315, normalized size of antiderivative = 1.09, number of steps used = 14, number of rules used = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.520, Rules used = {3042, 4620, 372, 27, 440, 27, 402, 402, 27, 402, 27, 291, 216}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sin ^6(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{5/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sin (e+f x)^6}{\left (a+b \sec (e+f x)^2\right )^{5/2}}dx\)

\(\Big \downarrow \) 4620

\(\displaystyle \frac {\int \frac {\tan ^6(e+f x)}{\left (\tan ^2(e+f x)+1\right )^4 \left (b \tan ^2(e+f x)+a+b\right )^{5/2}}d\tan (e+f x)}{f}\)

\(\Big \downarrow \) 372

\(\displaystyle \frac {\frac {\tan ^3(e+f x)}{6 a \left (\tan ^2(e+f x)+1\right )^3 \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}-\frac {\int \frac {3 \tan ^2(e+f x) \left (-2 (a+b) \tan ^2(e+f x)+a+b\right )}{\left (\tan ^2(e+f x)+1\right )^3 \left (b \tan ^2(e+f x)+a+b\right )^{5/2}}d\tan (e+f x)}{6 a}}{f}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {\tan ^3(e+f x)}{6 a \left (\tan ^2(e+f x)+1\right )^3 \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}-\frac {\int \frac {\tan ^2(e+f x) \left (-2 (a+b) \tan ^2(e+f x)+a+b\right )}{\left (\tan ^2(e+f x)+1\right )^3 \left (b \tan ^2(e+f x)+a+b\right )^{5/2}}d\tan (e+f x)}{2 a}}{f}\)

\(\Big \downarrow \) 440

\(\displaystyle \frac {\frac {\tan ^3(e+f x)}{6 a \left (\tan ^2(e+f x)+1\right )^3 \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}-\frac {\frac {\int \frac {(a+b) \left (3 (a+b)-2 (4 a+9 b) \tan ^2(e+f x)\right )}{\left (\tan ^2(e+f x)+1\right )^2 \left (b \tan ^2(e+f x)+a+b\right )^{5/2}}d\tan (e+f x)}{4 a}-\frac {3 (a+b) \tan (e+f x)}{4 a \left (\tan ^2(e+f x)+1\right )^2 \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}}{2 a}}{f}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {\tan ^3(e+f x)}{6 a \left (\tan ^2(e+f x)+1\right )^3 \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}-\frac {\frac {(a+b) \int \frac {3 (a+b)-2 (4 a+9 b) \tan ^2(e+f x)}{\left (\tan ^2(e+f x)+1\right )^2 \left (b \tan ^2(e+f x)+a+b\right )^{5/2}}d\tan (e+f x)}{4 a}-\frac {3 (a+b) \tan (e+f x)}{4 a \left (\tan ^2(e+f x)+1\right )^2 \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}}{2 a}}{f}\)

\(\Big \downarrow \) 402

\(\displaystyle \frac {\frac {\tan ^3(e+f x)}{6 a \left (\tan ^2(e+f x)+1\right )^3 \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}-\frac {\frac {(a+b) \left (\frac {(11 a+21 b) \tan (e+f x)}{2 a \left (\tan ^2(e+f x)+1\right ) \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}-\frac {\int \frac {(a+b) (5 a+21 b)-4 b (11 a+21 b) \tan ^2(e+f x)}{\left (\tan ^2(e+f x)+1\right ) \left (b \tan ^2(e+f x)+a+b\right )^{5/2}}d\tan (e+f x)}{2 a}\right )}{4 a}-\frac {3 (a+b) \tan (e+f x)}{4 a \left (\tan ^2(e+f x)+1\right )^2 \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}}{2 a}}{f}\)

\(\Big \downarrow \) 402

\(\displaystyle \frac {\frac {\tan ^3(e+f x)}{6 a \left (\tan ^2(e+f x)+1\right )^3 \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}-\frac {\frac {(a+b) \left (\frac {(11 a+21 b) \tan (e+f x)}{2 a \left (\tan ^2(e+f x)+1\right ) \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}-\frac {\frac {\int \frac {(a+b) \left (15 a^2+112 b a+105 b^2-14 b (7 a+15 b) \tan ^2(e+f x)\right )}{\left (\tan ^2(e+f x)+1\right ) \left (b \tan ^2(e+f x)+a+b\right )^{3/2}}d\tan (e+f x)}{3 a (a+b)}-\frac {7 b (7 a+15 b) \tan (e+f x)}{3 a \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}}{2 a}\right )}{4 a}-\frac {3 (a+b) \tan (e+f x)}{4 a \left (\tan ^2(e+f x)+1\right )^2 \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}}{2 a}}{f}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {\tan ^3(e+f x)}{6 a \left (\tan ^2(e+f x)+1\right )^3 \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}-\frac {\frac {(a+b) \left (\frac {(11 a+21 b) \tan (e+f x)}{2 a \left (\tan ^2(e+f x)+1\right ) \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}-\frac {\frac {\int \frac {15 a^2+112 b a+105 b^2-14 b (7 a+15 b) \tan ^2(e+f x)}{\left (\tan ^2(e+f x)+1\right ) \left (b \tan ^2(e+f x)+a+b\right )^{3/2}}d\tan (e+f x)}{3 a}-\frac {7 b (7 a+15 b) \tan (e+f x)}{3 a \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}}{2 a}\right )}{4 a}-\frac {3 (a+b) \tan (e+f x)}{4 a \left (\tan ^2(e+f x)+1\right )^2 \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}}{2 a}}{f}\)

\(\Big \downarrow \) 402

\(\displaystyle \frac {\frac {\tan ^3(e+f x)}{6 a \left (\tan ^2(e+f x)+1\right )^3 \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}-\frac {\frac {(a+b) \left (\frac {(11 a+21 b) \tan (e+f x)}{2 a \left (\tan ^2(e+f x)+1\right ) \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}-\frac {\frac {\frac {\int \frac {15 (a+b) \left (a^2+14 b a+21 b^2\right )}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)}{a (a+b)}-\frac {b \left (113 a^2+420 a b+315 b^2\right ) \tan (e+f x)}{a (a+b) \sqrt {a+b \tan ^2(e+f x)+b}}}{3 a}-\frac {7 b (7 a+15 b) \tan (e+f x)}{3 a \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}}{2 a}\right )}{4 a}-\frac {3 (a+b) \tan (e+f x)}{4 a \left (\tan ^2(e+f x)+1\right )^2 \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}}{2 a}}{f}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {\tan ^3(e+f x)}{6 a \left (\tan ^2(e+f x)+1\right )^3 \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}-\frac {\frac {(a+b) \left (\frac {(11 a+21 b) \tan (e+f x)}{2 a \left (\tan ^2(e+f x)+1\right ) \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}-\frac {\frac {\frac {15 \left (a^2+14 a b+21 b^2\right ) \int \frac {1}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)}{a}-\frac {b \left (113 a^2+420 a b+315 b^2\right ) \tan (e+f x)}{a (a+b) \sqrt {a+b \tan ^2(e+f x)+b}}}{3 a}-\frac {7 b (7 a+15 b) \tan (e+f x)}{3 a \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}}{2 a}\right )}{4 a}-\frac {3 (a+b) \tan (e+f x)}{4 a \left (\tan ^2(e+f x)+1\right )^2 \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}}{2 a}}{f}\)

\(\Big \downarrow \) 291

\(\displaystyle \frac {\frac {\tan ^3(e+f x)}{6 a \left (\tan ^2(e+f x)+1\right )^3 \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}-\frac {\frac {(a+b) \left (\frac {(11 a+21 b) \tan (e+f x)}{2 a \left (\tan ^2(e+f x)+1\right ) \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}-\frac {\frac {\frac {15 \left (a^2+14 a b+21 b^2\right ) \int \frac {1}{\frac {a \tan ^2(e+f x)}{b \tan ^2(e+f x)+a+b}+1}d\frac {\tan (e+f x)}{\sqrt {b \tan ^2(e+f x)+a+b}}}{a}-\frac {b \left (113 a^2+420 a b+315 b^2\right ) \tan (e+f x)}{a (a+b) \sqrt {a+b \tan ^2(e+f x)+b}}}{3 a}-\frac {7 b (7 a+15 b) \tan (e+f x)}{3 a \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}}{2 a}\right )}{4 a}-\frac {3 (a+b) \tan (e+f x)}{4 a \left (\tan ^2(e+f x)+1\right )^2 \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}}{2 a}}{f}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {\frac {\tan ^3(e+f x)}{6 a \left (\tan ^2(e+f x)+1\right )^3 \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}-\frac {\frac {(a+b) \left (\frac {(11 a+21 b) \tan (e+f x)}{2 a \left (\tan ^2(e+f x)+1\right ) \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}-\frac {\frac {\frac {15 \left (a^2+14 a b+21 b^2\right ) \arctan \left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)+b}}\right )}{a^{3/2}}-\frac {b \left (113 a^2+420 a b+315 b^2\right ) \tan (e+f x)}{a (a+b) \sqrt {a+b \tan ^2(e+f x)+b}}}{3 a}-\frac {7 b (7 a+15 b) \tan (e+f x)}{3 a \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}}{2 a}\right )}{4 a}-\frac {3 (a+b) \tan (e+f x)}{4 a \left (\tan ^2(e+f x)+1\right )^2 \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}}{2 a}}{f}\)

input
Int[Sin[e + f*x]^6/(a + b*Sec[e + f*x]^2)^(5/2),x]
 
output
(Tan[e + f*x]^3/(6*a*(1 + Tan[e + f*x]^2)^3*(a + b + b*Tan[e + f*x]^2)^(3/ 
2)) - ((-3*(a + b)*Tan[e + f*x])/(4*a*(1 + Tan[e + f*x]^2)^2*(a + b + b*Ta 
n[e + f*x]^2)^(3/2)) + ((a + b)*(((11*a + 21*b)*Tan[e + f*x])/(2*a*(1 + Ta 
n[e + f*x]^2)*(a + b + b*Tan[e + f*x]^2)^(3/2)) - ((-7*b*(7*a + 15*b)*Tan[ 
e + f*x])/(3*a*(a + b + b*Tan[e + f*x]^2)^(3/2)) + ((15*(a^2 + 14*a*b + 21 
*b^2)*ArcTan[(Sqrt[a]*Tan[e + f*x])/Sqrt[a + b + b*Tan[e + f*x]^2]])/a^(3/ 
2) - (b*(113*a^2 + 420*a*b + 315*b^2)*Tan[e + f*x])/(a*(a + b)*Sqrt[a + b 
+ b*Tan[e + f*x]^2]))/(3*a))/(2*a)))/(4*a))/(2*a))/f
 

3.2.25.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 291
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*((c_) + (d_.)*(x_)^2)), x_Symbol] :> Subst 
[Int[1/(c - (b*c - a*d)*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b, c, 
d}, x] && NeQ[b*c - a*d, 0]
 

rule 372
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_ 
), x_Symbol] :> Simp[(-a)*e^3*(e*x)^(m - 3)*(a + b*x^2)^(p + 1)*((c + d*x^2 
)^(q + 1)/(2*b*(b*c - a*d)*(p + 1))), x] + Simp[e^4/(2*b*(b*c - a*d)*(p + 1 
))   Int[(e*x)^(m - 4)*(a + b*x^2)^(p + 1)*(c + d*x^2)^q*Simp[a*c*(m - 3) + 
 (a*d*(m + 2*q - 1) + 2*b*c*(p + 1))*x^2, x], x], x] /; FreeQ[{a, b, c, d, 
e, q}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] && GtQ[m, 3] && IntBinomialQ[a 
, b, c, d, e, m, 2, p, q, x]
 

rule 402
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_.)*((e_) + (f_.)*(x 
_)^2), x_Symbol] :> Simp[(-(b*e - a*f))*x*(a + b*x^2)^(p + 1)*((c + d*x^2)^ 
(q + 1)/(a*2*(b*c - a*d)*(p + 1))), x] + Simp[1/(a*2*(b*c - a*d)*(p + 1)) 
 Int[(a + b*x^2)^(p + 1)*(c + d*x^2)^q*Simp[c*(b*e - a*f) + e*2*(b*c - a*d) 
*(p + 1) + d*(b*e - a*f)*(2*(p + q + 2) + 1)*x^2, x], x], x] /; FreeQ[{a, b 
, c, d, e, f, q}, x] && LtQ[p, -1]
 

rule 440
Int[((g_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_ 
)*((e_) + (f_.)*(x_)^2), x_Symbol] :> Simp[g*(b*e - a*f)*(g*x)^(m - 1)*(a + 
 b*x^2)^(p + 1)*((c + d*x^2)^(q + 1)/(2*b*(b*c - a*d)*(p + 1))), x] - Simp[ 
g^2/(2*b*(b*c - a*d)*(p + 1))   Int[(g*x)^(m - 2)*(a + b*x^2)^(p + 1)*(c + 
d*x^2)^q*Simp[c*(b*e - a*f)*(m - 1) + (d*(b*e - a*f)*(m + 2*q + 1) - b*2*(c 
*f - d*e)*(p + 1))*x^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, q}, x] && 
 LtQ[p, -1] && GtQ[m, 1]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4620
Int[((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_.)*sin[(e_.) + (f_.)*(x_ 
)]^(m_), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Simp[ff^(m 
+ 1)/f   Subst[Int[x^m*(ExpandToSum[a + b*(1 + ff^2*x^2)^(n/2), x]^p/(1 + f 
f^2*x^2)^(m/2 + 1)), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, 
 x] && IntegerQ[m/2] && IntegerQ[n/2]
 
3.2.25.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(2210\) vs. \(2(260)=520\).

Time = 10.46 (sec) , antiderivative size = 2211, normalized size of antiderivative = 7.68

method result size
default \(\text {Expression too large to display}\) \(2211\)

input
int(sin(f*x+e)^6/(a+b*sec(f*x+e)^2)^(5/2),x,method=_RETURNVERBOSE)
 
output
-1/48/f/a^5/(-a)^(1/2)*(b+a*cos(f*x+e)^2)*(-315*((b+a*cos(f*x+e)^2)/(1+cos 
(f*x+e))^2)^(1/2)*ln(4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1 
/2)*cos(f*x+e)+4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)-4* 
sin(f*x+e)*a)*a*b^3*cos(f*x+e)^2+162*(-a)^(1/2)*a^3*b*cos(f*x+e)^2*sin(f*x 
+e)+574*(-a)^(1/2)*a^2*b^2*cos(f*x+e)^2*sin(f*x+e)+420*(-a)^(1/2)*a*b^3*co 
s(f*x+e)^2*sin(f*x+e)-15*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*ln(4* 
(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)+4*(-a)^( 
1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)-4*sin(f*x+e)*a)*a^3*b*cos 
(f*x+e)-225*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*ln(4*(-a)^(1/2)*(( 
b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)+4*(-a)^(1/2)*((b+a*co 
s(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)-4*sin(f*x+e)*a)*a^2*b^2*cos(f*x+e)-525 
*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*ln(4*(-a)^(1/2)*((b+a*cos(f*x 
+e)^2)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)+4*(-a)^(1/2)*((b+a*cos(f*x+e)^2) 
/(1+cos(f*x+e))^2)^(1/2)-4*sin(f*x+e)*a)*a*b^3*cos(f*x+e)-18*(-a)^(1/2)*a^ 
3*b*cos(f*x+e)^6*sin(f*x+e)+96*(-a)^(1/2)*a^3*b*cos(f*x+e)^4*sin(f*x+e)+63 
*(-a)^(1/2)*a^2*b^2*cos(f*x+e)^4*sin(f*x+e)-225*((b+a*cos(f*x+e)^2)/(1+cos 
(f*x+e))^2)^(1/2)*ln(4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1 
/2)*cos(f*x+e)+4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)-4* 
sin(f*x+e)*a)*a^3*b*cos(f*x+e)^3-525*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2) 
^(1/2)*ln(4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*cos(...
 
3.2.25.5 Fricas [A] (verification not implemented)

Time = 24.11 (sec) , antiderivative size = 1003, normalized size of antiderivative = 3.48 \[ \int \frac {\sin ^6(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{5/2}} \, dx=\text {Too large to display} \]

input
integrate(sin(f*x+e)^6/(a+b*sec(f*x+e)^2)^(5/2),x, algorithm="fricas")
 
output
[-1/384*(15*(a^3*b^2 + 15*a^2*b^3 + 35*a*b^4 + 21*b^5 + (a^5 + 15*a^4*b + 
35*a^3*b^2 + 21*a^2*b^3)*cos(f*x + e)^4 + 2*(a^4*b + 15*a^3*b^2 + 35*a^2*b 
^3 + 21*a*b^4)*cos(f*x + e)^2)*sqrt(-a)*log(128*a^4*cos(f*x + e)^8 - 256*( 
a^4 - a^3*b)*cos(f*x + e)^6 + 32*(5*a^4 - 14*a^3*b + 5*a^2*b^2)*cos(f*x + 
e)^4 + a^4 - 28*a^3*b + 70*a^2*b^2 - 28*a*b^3 + b^4 - 32*(a^4 - 7*a^3*b + 
7*a^2*b^2 - a*b^3)*cos(f*x + e)^2 + 8*(16*a^3*cos(f*x + e)^7 - 24*(a^3 - a 
^2*b)*cos(f*x + e)^5 + 2*(5*a^3 - 14*a^2*b + 5*a*b^2)*cos(f*x + e)^3 - (a^ 
3 - 7*a^2*b + 7*a*b^2 - b^3)*cos(f*x + e))*sqrt(-a)*sqrt((a*cos(f*x + e)^2 
 + b)/cos(f*x + e)^2)*sin(f*x + e)) + 8*(8*a^5*cos(f*x + e)^9 - 2*(13*a^5 
+ 9*a^4*b)*cos(f*x + e)^7 + 3*(11*a^5 + 32*a^4*b + 21*a^3*b^2)*cos(f*x + e 
)^5 + 2*(81*a^4*b + 287*a^3*b^2 + 210*a^2*b^3)*cos(f*x + e)^3 + (113*a^3*b 
^2 + 420*a^2*b^3 + 315*a*b^4)*cos(f*x + e))*sqrt((a*cos(f*x + e)^2 + b)/co 
s(f*x + e)^2)*sin(f*x + e))/(a^8*f*cos(f*x + e)^4 + 2*a^7*b*f*cos(f*x + e) 
^2 + a^6*b^2*f), -1/192*(15*(a^3*b^2 + 15*a^2*b^3 + 35*a*b^4 + 21*b^5 + (a 
^5 + 15*a^4*b + 35*a^3*b^2 + 21*a^2*b^3)*cos(f*x + e)^4 + 2*(a^4*b + 15*a^ 
3*b^2 + 35*a^2*b^3 + 21*a*b^4)*cos(f*x + e)^2)*sqrt(a)*arctan(1/4*(8*a^2*c 
os(f*x + e)^5 - 8*(a^2 - a*b)*cos(f*x + e)^3 + (a^2 - 6*a*b + b^2)*cos(f*x 
 + e))*sqrt(a)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)/((2*a^3*cos(f*x 
 + e)^4 - a^2*b + a*b^2 - (a^3 - 3*a^2*b)*cos(f*x + e)^2)*sin(f*x + e))) + 
 4*(8*a^5*cos(f*x + e)^9 - 2*(13*a^5 + 9*a^4*b)*cos(f*x + e)^7 + 3*(11*...
 
3.2.25.6 Sympy [F(-1)]

Timed out. \[ \int \frac {\sin ^6(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{5/2}} \, dx=\text {Timed out} \]

input
integrate(sin(f*x+e)**6/(a+b*sec(f*x+e)**2)**(5/2),x)
 
output
Timed out
 
3.2.25.7 Maxima [F]

\[ \int \frac {\sin ^6(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{5/2}} \, dx=\int { \frac {\sin \left (f x + e\right )^{6}}{{\left (b \sec \left (f x + e\right )^{2} + a\right )}^{\frac {5}{2}}} \,d x } \]

input
integrate(sin(f*x+e)^6/(a+b*sec(f*x+e)^2)^(5/2),x, algorithm="maxima")
 
output
integrate(sin(f*x + e)^6/(b*sec(f*x + e)^2 + a)^(5/2), x)
 
3.2.25.8 Giac [F]

\[ \int \frac {\sin ^6(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{5/2}} \, dx=\int { \frac {\sin \left (f x + e\right )^{6}}{{\left (b \sec \left (f x + e\right )^{2} + a\right )}^{\frac {5}{2}}} \,d x } \]

input
integrate(sin(f*x+e)^6/(a+b*sec(f*x+e)^2)^(5/2),x, algorithm="giac")
 
output
sage0*x
 
3.2.25.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sin ^6(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{5/2}} \, dx=\int \frac {{\sin \left (e+f\,x\right )}^6}{{\left (a+\frac {b}{{\cos \left (e+f\,x\right )}^2}\right )}^{5/2}} \,d x \]

input
int(sin(e + f*x)^6/(a + b/cos(e + f*x)^2)^(5/2),x)
 
output
int(sin(e + f*x)^6/(a + b/cos(e + f*x)^2)^(5/2), x)